Bifurcation and Stability Analyses for a Coupled Brusselator Model
نویسندگان
چکیده
This paper addresses the dynamic behaviour of a chemical oscillator arising from the series coupling of two Brusselators. Of particular interest is the study of the associated Hopf bifurcation and double-Hopf bifurcations. The motion of the oscillator may either be periodic (bifurcating from a Hopf-type critical point), or quasi-periodic (bifurcating from a compound critical point). Furthermore, bifurcation analysis reveals that the limit cycles associated with the "rst Brusselator are always stable, while that generated by the second Brusselator may be unstable if the parameter values are chosen far from the stability boundary. It is interesting to note that in the vicinity of the double-Hopf compound critical point, there exist periodic as well as quasi-periodic solutions. The quasi-periodic motion is stable for a small parameter region. A robust Gauss}Seidel like implicit "nite-di!erence method (GS1) has been developed and used for the solution of the resulting initial-value problem (IVP). In addition to being of comparable accuracy (judging by the similarity of the pro"les generated) with the fourth order Runge}Kutta method (RK4), the GS1 method will be seen to have better numerical stability property than RK4. Unlike the RK4, which fails when large time steps are used to integrate the IVP, extensive numerical simulations with appropriate initial data suggest that the GS1 method is unconditionally convergent. Moreover, it is more economical computationally. ( 2001 Academic Press
منابع مشابه
Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments.
A theoretical analysis is presented to show the general occurrence of phase clusters in weakly, globally coupled oscillators close to a Hopf bifurcation. Through a reductive perturbation method, we derive the amplitude equation with a higher-order correction term valid near a Hopf bifurcation point. This amplitude equation allows us to calculate analytically the phase coupling function from giv...
متن کاملInteraction of Turing and Hopf modes in the superdiffusive Brusselator model
Long-wave stability of spatiotemporal patterns near a codimension-2 Turing–Hopf point of the one-dimensional superdiffusive Brusselator model is analyzed. The superdiffusive Brusselator model differs from its regular counterpart in that the Laplacian operator of the regular model is replaced by ∂/∂ |ξ | , 1 < α < 2, an integro-differential operator that reflects the nonlocal behavior of superdi...
متن کاملThe Stability of Localized Spikes for the 1-D Brusselator Reaction-Diffusion Model
In a one-dimensional domain, the stability of localized spike patterns is analyzed for two closely related singularly perturbed reaction-diffusion (RD) systems with Brusselator kinetics. For the first system, where there is no influx of the inhibitor on the domain boundary, asymptotic analysis is used to derive a nonlocal eigenvalue problem (NLEP) whose spectrum determines the linear stability ...
متن کاملBIFURCATION ANALYSIS OF A DDE MODEL OF THE CORAL REEF
In this paper, first we discuss a local stability analysis of model was introduced by P. J. Mumby et. al. (2007), with $frac{gM^{2}}{M+T}$ as the functional response term. We conclude that the grazing intensity is the important parameter to control the existence or extinction of the coral reef. Next, we consider this model under the influence of the time delay as the bifurcat...
متن کاملMesa-type patterns in the one-dimensional Brusselator and their stability
The Brusselator is a generic reaction-diffusion model for a tri-molecular chemical reaction. We consider the case when the input and output reactions are slow. In this limit, we show the existence of K-periodic, spatially bi-stable structures, mesas, and study their stability. Using singular perturbation techniques, we find a threshold for the stability of K mesas. This threshold occurs in the ...
متن کامل